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Abstract

This is a brief overview of Hubbard model. Section 1 is brief history
and an overview of the power of Hubbard model. Formulation of
Hubbard model is discuss in section 2 and the solution of the model
is derived in section 3. Special cases as our first interpretation of
Hubbard model, where t = 0 or U = 0, is discuss in section 4. As a
conclusion, an intriguing interplay of the wave and particle aspect of
Hubbard model is covered on the last section 5.

1 Introduction

Hubbard model is a paradigm in condensed matter physics, reducing many-
body interactions to an effective one-body descriptions.[1]

The Hubbard model is named after John Hubbard following the submis-
sion of his 1963 paper. Hubbard continued to refine his model, which would
eventually led to six installments.

This papers launched the field of strongly correlated systems and its vari-
ants constitute an important research topic in theoretical condensed matter
physics.

Technically, Hubbard model is just an extension of the so-called tight-
binding model where in electron can hop between lattices without feeling
each other. Qualitatively, Hubbard model gives a different result from tight-
binding model for strong interactions. For instance, Hubbard model at half
filling - one electron per lattice site - is capable of reproducing Mott transi-
tion.

Analytical methods of solving the Hubbard model are all approximate,
except in 1D, where the so called Bethe ansatz provides an exact solution.
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Figure 1: Hubbard Model lattice sites

Our focus on this report is the one dimensional Hubbard model for it is
integrable, which means that many physical properties can be determined
exactly. One dimensional Hubbard model solution serves as a benchmark of
other approximate and numerical methods. This allows us to study many-
body physics beyond the restrictions of perturbation theory or intuitive non-
systematic approximations.

2 Formulation of Hubbard Model

Hubbard model consists of lattice sites, and a set of electrons that hop around
from site to neighboring site in the lattice. Figure 1 is the best transformation
of an (a) atomic orbits in a (b) crystal that is (c) non-degenerate into a (d)
lattice site. An electron has a property called spin that can either be spin
up or spin down.

A particular lattice site can accommodate zero, one, or two electrons, but
if two electrons are on the same site they must have opposite spin to obey
the Pauli exclusion principle. A configuration with two electrons of opposite
spin on the same site has an increased energy, because electrons repel each
other electrically. That energy cost is denoted U.

It is also assumed that an electron can hop from one site to a neighboring
site; when it does so, its spin doesn’t change. The change of hopping to
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another neighboring site is based on the variable conventionally denoted by
-t.

Certain refinements can be added to the model. One can add a magnetic
field h. If h is positive, it will favor configurations that have more electrons
with spin up. Another refinement could be the addition of chemical poten-
tials. A positive chemical potential increases the energy of configurations
that have more electrons.

For this study, we’ll focus on the Hubbard model bare, without any form
of refinement. To start with, we need to be introduced to tight-binding
model.

2.1 Extension of tight-binding model

Hubbard model is based on tight-binding approximation. In tight-binding
approximation, electrons are viewed as occupying the standard orbitals of
their constituent atoms, and then ”hopping” between atoms during conduc-
tion. Tigh-binding model consider the interaction of a single electron with
the potential of nuclei and other electrons in an average way only. Using
second quantization formalism, the Hamiltonian operator in tight-binding
framework is given as,

H = −t
∑
(i,j,σ)

(c†(i,σ)c(j,σ)) + h.c. (1)

Hubbard model formulates the conduction in terms of the hopping in-
tegral to include the so-called ”on-site repulsion”, which stems from the
Coulomb repulsion between electrons at the same atomic orbitals.

The Hamiltonian is now made up of two components: Hhop and Hint. The
Hhop describes quantum mechanical hopping of electrons while Hint describes
nonlinear repulsive interactions.

H = −t
∑
(i,j,σ)

(c†(i,σ)c(j,σ))︸ ︷︷ ︸
Hhop

−U
N∑

(i=1)

(n(i,↑)n(i,↓))︸ ︷︷ ︸
Hint

(2)

The hopping amplitude t is assumed to be real, representing the quantum
amplitude that an electron hops from site i to j. The U is assumed to be real
as well. Both t and U are treated as constant.
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3 1D Hubbard Model Solution

For 1D Hubbard Model, an exact solution is provided by using the Bethe
ansatz method. Bethe ansatz was invented to solve Heisenberg spin models,
which is essentially a model of lattice bosons.

For one-dimensional Hubbard model we are interested in the ground state
solution of the Schrodinger equation:

H |ψ〉 = E |ψ〉 (3)

where H is given by equation (2).
The Hamiltonian, H, is found to commute with

∑N
(i=1) n(i,↑) and

∑N
(i=1) n(i,↓).

[
∑

n(i,↑), H] = [
∑

n(i,↓), H] = 0 (4)

We can, then, look for energy eigenstate from the spin-down and spin-up
fixed numbers M and M’, where N = M + M’ is the total number of electrons.

The fixed numbers M and M’ are good quantum numbers for our eigen-
state |M,M ′〉. Therefore we characterize the Hamiltonian eigenstate by M
and M’, and rewrite the Schrodinger equation (3) as,

H |M,M ′〉 = E(M,M ′) |M,M ′〉 (5)

The energy eigenstate can be recast as a linear combination of state of
electron at specific sites.

|M,M ′〉 =
∑

f(x1, x2, ..., xN)︸ ︷︷ ︸
amplitude of the state |X〉

|x1, x2, ..., xN〉 (6)

For convenience we can write the N-tuple x1, x2, ..., xN as X,

|M,M ′〉 =
∑

f(X) |X〉 (7)

Substituting this eigenstate to equation (5), we have

H |M,M ′〉 = E(M,M ′) |M,M ′〉

H
∑

f(X) |X〉 = E(M,M ′)
∑

f(X) |X〉
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Using Hubbard hamiltonian, equation above we have,

T
N∑
i=1

f(x1, ..., xi + 1, ..., xN) + f(x1, ..., xi − 1, ..., xN)

+ U
[∑
i<j

δ(xi − xj)
]
f(X) = Ef(X) (8)

In equation (8), we have to solve for f and E. This is where Bethe ansatz
is needed.

We can write the function f(X) using Bethe ansatz as,

f(X) =
∑
P

[Q,P ]exp(i(kP1xQ1, ..., kPNxQN)) (9)

where [Q,P ] is a set of N ! × N ! coefficients indexed by a pair of per-
mutations, Q,P, all yet to be determined. Q = {Q1, Q2, ..., QN} is the
permutations that maps the indexed set {1, 2, ..., N} into Q1, Q2, ..., QN .

Substituting equation (9) to equation (8), we have

E = E(M,M ′) = −2T
∑
j=1

cos(kj) (10)

4 Hubbard Model First Interpretation

Special cases of Hubbard model provides some insights about the model
without doing difficult mathematics. This serves as the first test of the
validity of the model. For Hubbard model, the cases of t = 0 or U = 0 can
be diagonalized and understood by elementary means.[2]

4.1 Non-hopping system: t = 0

For non-hopping system, our Hubbard model’s Hamiltonian given by eq. (2)
is reduced to Ht=0 = Hint = UD, where

Ht=0 = U

(∑
n(j,↑)n(j,↓)

)
(11)
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This Hamiltonian is already a diagonalized form. A general eigenstate is
given in terms of Wannier state,

|x, σ〉 =

(∏
x∈X

c†x,↑

)(∏
x∈Y

c†x,↓

)
|0〉 (12)

where X and Y represent lattice sites occupied by up-spin and down-spin
electrons respectively. The total number of electrons is N = M + M’ such
that |X| = M and |Y | = M ′.

Using equation (12) our Hamiltonian is given now as,

Ht=0 |x, σ〉 = E(M,M ′) |x, σ〉 (13)

has an energy eigenvalues given by,

E(M,M ′) =
∑

Ux = U (14)

The limit t → 0 of the Hubbard Hamiltonian (2) is called the atomic
limit, because the eigenstate describes electrons localized at the sites.[2]

4.2 Non-interacting system: U = 0

Our Hamiltonian for non-interacting system is reduced to HU=0 = Hhop, the
tight-binding Hamiltonian similar to equation (1) (including its conjugate of
course).

HU=0 = −t
∑
j

c†j,σcj,σ + h.c. (15)

This Hamiltonian is not diagonal since it is a quadratic form in fermion op-
erators. This can be diagonalized by discrete Fourier transformation defined
as,

c†j,σ =
1

L

L−1∑
k=0

c̃†k,σe
−iφjk (16)

Inserting equation (16) to equation (15) leads to,
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HU=0 = −t
∑
j

c†j,σcj,σ + h.c

= − t
L

∑
j

L−1∑
k=0

c̃†k,σe
−iφjkc̃k,σe

iφ(j+1)k + h.c

= − t
L

∑
j

L−1∑
k=0

c̃†k,σ c̃k,σe
−iφjkeiφjkeiφk + h.c

= − t
L

∑
j

L−1∑
k=0

c̃†k,σ c̃k,σ(2cos(φk))

= − t
L

L−1∑
k=0

c̃†k,σ c̃k,σ(2Lcos(φk))

= −2t
L−1∑
k=0

cos(φk)ñk,σ

where ñk,σ = c̃†k,σ c̃k,σ.
Now that it is diagonalize, we obtain an alternative basis. We introduce

what is called the Bloch basis.

|q, σ〉 =

(∏
k∈K

c̃†k,↑

)( ∏
k∈K′

c̃†k,↓

)
|0〉 (17)

The row vector q = (q1, ..., qN) are the momenta of the electrons which
are delocalized.

Using this Bloch basis for our Hamiltonian, we have

HU=0 |q, σ〉 = −2t
N∑
j=1

cos(qj) |q, σ〉 (18)

5 Physics of Hubbard Model

The physics of the Hubbard model maybe understood as arising from the
competition between the two contributions, H0 and D to the Hamiltonian.[2]
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This is analogous to the competition of the minimization of energy and max-
imization of entropy.

It is also observe that wave-particle dualism plays a role in the competi-
tion between hopping tendency and the interaction of the electrons. In Hhop,
electrons behave like ”waves”, note the cosine part of the eigenvalue, while
Hint behave more as a ”particle”.

Technically, the tight binding Hamiltonian Hhop do not commute with the
operator D which counts the number of doubly occupied sites.[2] Therefore
the Hubbard Hamiltonian is not diagonal both in Bloch and Wannier basis.

An interesting aspect of the Hubbard model, aside from the mathematical
difficulty, is the idea that even though the Hamiltonian Hhop and Hint gives
us trivial order, their sum H = Hhop + Hint is believed to generate various
nontrivial order.

This interplay explains the transition from metal to insulator, antifer-
romagnetism, ferrimagnetism, ferromagnetism, Tomonaga-Luttinger liquid,
and superconductivity.
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